Деревья решений, лог. регрессия, SVM, XGBoost, Scikit-learn, Pandas

Расписание занятий (GMT+3):
- вт, чт 19:00–22:00,
- сб 11:00–14:00

Онлайн-доступ к программе для удаленных участников
Апрель - май 2020

Курс "Машинное обучение"

This website uses cookies to improve your user experience and to show you content related to your preferences. If you continue browsing, we consider that you agree to their use. More information.
Ok, don't show again
Close
Что входит в модуль
Это один из модулей флагманской программы "Специалист по большим данным"
3 лабы
Каждую неделю вам нужно будет решить лабораторную работу и суперачивку
7 занятий
Оффлайн с трансляциями в прямом эфире и видеозаписями в личном кабинете
Для кого этот модуль?
-1-
Разработчики
У вас есть опыт программирования, но по работе требуется понимать, что происходит в машинном обучении? На этом модуле вы научитесь строить модели машинного обучения и анализировать данные в Python.
-2-
Аналитики
Вы умеете анализировать данные, но требуется знание новых инструментов? Вы научитесь делать не только базовую аналитику, но и строить модели машинного обучения, прогнозирующие различные показатели.
-3-
Менеджеры
Вы занимаетесь развитием продукта или подразделения? На этом модуле вы получите погружение в машинное обучение, поймете юзкейсы использования и его ограничения, попробовав многие вещи своими руками.
Чему вы научитесь
В модуле есть четыре составляющих
Классический ML
Научитесь решать задачи регрессии и классификации при помощи различных алгоритмов машинного обучения, работая со структурированным типом данных. Узнаете, как правильно предобрабатывать и готовить данные для повышения качества прогноза моделей.
ML на текстах
Научитесь представлять текст в векторном виде и решать задачи машинного обучения в классическом виде. Узнаете, как проводить сентимент-анализ отзывов в интернете, для чего нужен word2vec и bag of words.
Ансамбли моделей
Научитесь создавать ансамбли из моделей, объединяя базовые классификаторы в один большой и повышая качество этой мета-модели. Узнаете, чем стэкинг отличается от блендинга, а также об их достоинствах и недостатках.
Введение в Deep learning
Узнаете о современных достижениях в области Deep Learning и какие виды задач можно решать при помощи глубоких нейронных сетей.
Лабы этого модуля
Используя обезличенные данные клиентов банка, вам нужно будет предсказать вероятность ухода из банка каждого из них в ближайшие несколько месяцев.
В этой лабе вам нужно будет найти похожие тексты вакансий. Суперачивка — участие в соревновании на Kaggle по определению эмоциональной окраски отзывов в интернете.
Используя данные по просмотру телепередач разных пользователей, сделать рекомендации фильмов по подписке, используя классические алгоритмы машинного обучения.
Преподаватели этого модуля
Владимир Опанасенко
Исполнительный директор,
Газпромбанк
Кирилл Данилюк
Engineering Manager,
Self-Driving Car, Yandex
Дмитрий Коробченко
Deep Learning R&D Engineer,
NVIDIA
Инфраструктура модуля
То, с чем вы будете работать каждый день
Кластер
Этот модуль посвящен машинному обучению, поэтому на нем вы будете работать с нашим сервером, оснащенным JupyterHub для удобной работы с Python.
GitHub
Все презентации, лабы, мануалы мы выкладываем в закрытый репозиторий на GitHub. Этот инструмент стал стандартом работы в среде программистов и профессионалов в сфере данных.
Личный кабинет
В нем вы можете проверить правильность выполнения лаб, используя автоматические чекеры. Там же можно смотреть прямые трансляции и видеозаписи занятий.
Slack
Общение во время модуля происходит в Slack — удобный мессенджер для команд. Там можно задавать вопросы во время трансляции, общаться с преподавателями, организаторами, друг с другом. Следить за апдейтами в GitHub и быть в курсе новостей.
Партнер по инфраструктуре
Стоимость модуля
€700
Для коллег/ друзей выпускников 20% скидка
Это не онлайн-курс
Это онлайн-доступ к офлайновой программе
В аудитории во время занятия находится преподаватель и офлайн-участники. Вы можете задавать вопросы и получать ответы в режиме реального времени, как будто вы находитесь вместе с ними.

Во всем остальном вы получаете все то же самое: доступ к кластеру, материалам, решаете лабы, работаете над проектами, объединяетесь в команды, общаетесь вне занятий в Slack.
Для учебы вам потребуются
Входные требования
Умение программировать на Python 3
Это основной язык программирования, используемый на модуле. Хорошо, если вы уже будете знакомы с базовым синтаксисом, циклами, условными операторами, функциями, чтением и записью файлов.
Базовые знания Linux
В командной строке Linux вы тоже будете много времени проводить, работая с нашим кластером. Хорошо, если вы уже будете уметь перемещаться по директориям, создавать и редактировать файлы, заходить на удаленный сервер по ssh.
SQL
На модуле вы будете использовать такой инструмент как Hive. Для работы с ним вам пригодится умение писать запросы на этом языке: селекты, джойны, фильтры, подзапросы.
Линейная алгебра и статистика
На модуле мы будем рассматривать продвинутые методы анализа данных, поэтому хорошо, если вы знаете основы статистики и линейной алгебры: среднее, дисперсия, вероятность, теорема Байеса, корреляция, ранг матрицы.
1
2
3
4
5
6
7
NLP
ML
Интересны другие модули?
Возьмите всю программу целиком
Отзывы
Где работают наши выпускники
Здесь они живут

Наши принципы обучения
Чтобы обучение было эффективным и интересным, мы используем андрагогику
-1-
Материал ориентирован на конкретные задачи
Наша цель — научить вас решать задачи из реальной жизни, а не покрыть список тем. Теория — это инструмент необходимый для решения задач, а не самоцель.
-2-
Возможность сразу же применять знания
Уже после первой недели вы научитесь решать задачи при помощи алгоритмов машинного обучения и сможете использовать эти знания для пилотного проекта на работе.
-3-
Самостоятельность в решении
Наши задания сформулированы так, что вам часто нужно будет что-то загуглить. После программы у вас будет свой багаж из качественных ресурсов.
F.A.Q.
Могу ли я взять другие модули?
Да, вы можете набрать любое количество модулей программы. Они не пересекаются, поскольку являются частью одной длинной 12-недельной программы. При этом с какого-то момента может оказаться, что дешевле будет взять программу целиком.
Сколько времени потребуется для обучения?
Занятия проходят 3 раза в неделю по 3 часа. Это 9 часов. Плюс 4-10 часов потребуется на решение лабораторных работ в зависимости от задания и вашего изначального уровня подготовки.
Я смогу пройти модуль, если совсем новичок и никогда не программировал?
Да, но будет сложно. Среди наших выпускников есть те, кто познакомился с программированием непосредственно на программе. Было непросто. Приходилось больше тратить время на задания, испытывать сложности. Но если есть высокая мотивация, то это все выполнимо. Также у нас есть отдельный подготовительный модуль с основами Python и Linux.
Чем ваша программа отличается от других курсов по data science?
1. Наша программа не просто про анализ данных, а про анализ больших данных. И такой программы больше нет. Анализ больших данных требует умения работы со специализированными инструментами и наличия инфраструктуры. Все практические задания выполняются на кластере, который мы администрируем и поддерживаем.
2. Это модуль офлайновой программы (этим отличается от онлайн-курсов, хотя по стоимости модуль сопоставим). На офлайн-программах, как правило, обучение строится эффективнее: есть поддерживающая среда из сокурсников, преподавателей, координатора. По статистике, доля успешно завершивших онлайн-курс редко превышает 25%. На нашей программе свыше 70% получают по итогам сертификат.
Остались вопросы?
Задайте их, и мы с радостью вам ответим
Оставьте контакты в форме ниже
Мы с вами свяжемся
Оставьте контакты в форме ниже
Мы с вами свяжемся
Оставьте контакты в форме ниже
Мы с вами свяжемся
Оставьте контакты в форме ниже
Мы все пришлем
Оставьте свой вопрос и контакты в форме ниже
Мы с вами свяжемся